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 Abstract— The hydrogenation of metal hydrides (MHs) is a 

heat-driven mass transfer process. Hence, its rate is determined 

by the heat transfer rate from the MH reactor. A heat transfer 

system (HTS) with fins and a cooling tube is one such method to 

enhance heat transfer. The fin efficiency (FE), hitherto not 

researched for unsteady processes like the present one, is 

required for the optimization of the reactor. The present 

numerical study proposes a new technique to estimate the FE 

from the temporal temperature profiles in the MH reactor. The 

effects of fin thickness (FT) and shape are studied. The former is 

varied from 1 to 7 mm, and the latter is changed to 3 different 

tapered cross-sections. The FE increases with FT but has a 

minimal effect after 4 mm, while the fin tapering is found to 

have no significant influence. A performance evaluation 

parameter (PEP) is presented to optimize the fin thickness and 

shape. 
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I. INTRODUCTION 

      Hydrogen is one of the potential fuels that could meet the 

global energy need without producing any pollutants. 

However, its low density makes storage and utilization 

inefficient. Conventional storage methods, such as gaseous 

and liquid storage technologies, pose safety and cost 

considerations. Solid-state storage using MHs is an effective 

alternative with higher volumetric density than conventional 

methods at moderate temperatures and pressures. However, 

the poor thermal conductivity of MH limits heat transfer 

during the exothermic hydrogen absorption process. Heat 

transfer from the MH must be enhanced to reduce hydrogen 

absorption time. 

Heat transfer from the MH can be improved by increasing 

the thermal conductivity or adding a heat transfer system 

(HTS). The thermal conductivity of the MH bed increases by 

adding copper wire structures [1], metal foam [2,3], metal 

compacts [4], etc. Employing an HTS to MH is much easier 

and requires less maintenance than thermal conductivity 

enhancements. HTSs generally consist of only simple tubes 

(straight or spiral) or a combination of fin and tubes. Adding 

fins to tubes greatly enhances heat transfer by improving the 
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surface area [5]. So far, various shapes of fins, such as 

rectangular [6], circular [7], conical [8], corrugated [9], 

multilayer [10], tree-shaped [11], and leaf vein [12], etc., are 

used with tubes for heat transfer enhancement. Some studies 

proposed novel HTS designs for better performance [13–15]. 

However, most studies optimized the HTS by considering 

only hydrogen absorption/desorption time. In addition to time, 

few studies considered weight ratio (weight alloy to the 

container) [16], energy efficiency [17], and gravimetric 

exergy output rate [18,19] as the parameters to optimize the 

design conditions. However, these are unrelated to heat 

transfer between MH and HTS. A parameter based on heat 

transfer between MH and HTS needs to be evaluated to 

optimize the MH reactor design. 

While research studies on optimizing the fin configurations 

in MH reactors are available in the literature but are based 

mostly on the time-based indirect method, the present study 

proposes a direct method based on the fin efficiency (FE) 

technique. 2D numerical simulations are conducted using 

COMSOL Multiphysics 5.6 on a rectangular element from a 

circular finned tube MH reactor. The FE is computed using the 

temporal temperature profiles of the simulation data. A 

performance evaluation index (PEP) is proposed by 

considering the FE, H2 absorption quantity, and system weight 

to optimize fin thickness and shape. 

II. MODEL DESCRIPTION 

A cylindrical reactor with radial circular fins (Fig.1 a and b) 

is used to enhance the heat transfer from the LaNi5-based MH 

reactor. A 2D single unit of fin surrounded by MH (Fig. 1c) is 

considered the computational domain by assuming there is no 

temperature variation along the length of the reactor. Fig. 2 

represents the boundary conditions used for the simulations. 

The current study aims to optimize fin structural parameters 

such as fin thickness and shape using the FE. Due to internal 

heat generation in the MH bed, the temperature varies along the 

reactor length with time. As a result, calculating FE in the 

current situation is challenging. Hence, the complexity of the 

model is simplified using the following assumptions. 
 

 Heat transfer occurs only from the fin base; all other 

boundaries are adiabatic. 

 Fin base temperature (Tb) is constant with time. 

 Convection and radiation heat transfer are negligible. 

 The thermal contact resistance between the fin and MH 

bed is neglected. 
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 The heat transfer between the fin and MH bed is directly 

proportional to their temperature difference.  

Fin

HTF tube
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(b)

(c)

 

Fig. 1 Schematic of mh reactor (a) isometric view of the design (b) 

top and side views (c) extended view of a single unit of fin and mh 

bed 

MH

Tb

L

Fin
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Fig. 2 Simulation model with adiabatic boundary 

III. NUMERICAL METHODOLOGY 

   A finite element method-based package COMSOL 5.6 is 

used for conducting simulations in the LaNi5 MH bed. The 

simulation methodology used in the present work to analyze 

the behavior of hydrogen absorption is the same as that 

described in the author's previous article [12]. 

A. Methodology for calculating FE 

     The present problem involves only conduction heat 

transfer from MH to fin and fin to fin base. In contrast to the 

typical fin problem, there is no convection heat transfer, and 

the MH temperature varies along its length. In the present 

problem, the actual and maximum heat transfer for 

calculating FE is determined from the temporal temperature 

profiles of simulation data. Assuming the heat transfer 

between the fin and    MH is directly proportional to the 

temperature difference between the fin and MH due to pure 

conduction. The FE is defined as the ratio of the actual mean 

temperature difference (MTD) between the MH and fin to the 

maximum mean temperature difference between MH and fin, 

i.e., when the fin is at base temperature. 
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    The MH domain is divided into several elements to obtain 

a temperature profile. The MTD for an actual case between 

the fin and MH is calculated using the log mean temperature 

difference (LMTD) technique as 

 
1 2

1
log

2

act

T T
MTD

T

T

 


 
 
 

                                          (2) 

 

  The calculation of ∆T1 and ∆T2 are represented 

schematically in Fig. 3.  

    Similarly, the maximum heat transfer between the fin and 

MH would exist when the fin is at base temperature. 

Considering this assumption, the maximum MTD is 

calculated as 
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Fig. 3 Schematic of the MH and fin temperature profiles for 

calculating MTD 

IV. RESULTS AND DISCUSSION 

A. Validation 

    The numerical model's accuracy is confirmed by comparing 

it with the experimental findings of Singh et al. [20] conducted 

under comparable design and operating conditions. In Fig. 4, 

the experimental and numerical results are compared. The MH 

bed's hydrogen absorption behavior and temperature profiles 

align closely with the experimental data, with a maximum 

deviation of less than 2%. This affirmation establishes the 

validity of the numerical model for conducting subsequent 

simulations. 

B. Fin thickness (FT) optimization 

     Fig. 5 depicts the changes in the time required to achieve 

90% saturation and the quantity of H2 absorption with different 

fin thicknesses (FTs). The FT is adjusted between 1 to 7 mm 

while keeping a consistent pitch between fins. It is observed 

that both the time for H2 absorption and the absorption quantity 

decrease as the FT increases. This can be ascribed to the 

heightened heat transfer associated with larger FT, which takes 
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up more space, reducing the amount of MH in the reactor and 

lowering the H2 absorption quantity. 
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Fig. 4 Comparison of numerical results with experimental results 

 

In the present situation, selecting the FT based solely on 

absorption time is not feasible because a higher FT may result 

in a shorter absorption time and reduced hydrogen absorption. 

For optimal design, it is crucial to balance these two factors. 

The Fin Efficiency (FE) is initially determined to evaluate heat 

transfer, and subsequently, a performance parameter is 

introduced to achieve optimal hydrogen absorption time and 

quantity. 

FE is calculated at each moment using Eq. 1. Fig. 6 illustrates 

the variation of FE over time for different FTs. It is observed 

that FE increases over time for each FT, reaching a maximum 

value and then stabilizing. This phenomenon is attributed to the 

exothermic heat generation within the MH bed, enabling the fin 

to transfer more heat and consequently improving FE. Once the 

exothermic reaction is complete, the availability of heat to the 

fin no longer impacts FE. 

      Increasing FT beyond 4 mm has a less significant effect on 

FE. The maximum FE for each thickness is plotted in Fig. 7. 

FE is significantly enhanced when the FT is increased from 1 

to 4 mm. However, this enhancement is minimal after 3 mm 

thickness. Increasing FT adds weight and decreases the amount 

of MH, leading to a decrease in H2 absorption quantity. To 

have a balance between FE, H2 absorption quantity, and total 

system weight (MH+fin), a parameter known as the 

performance evaluation parameter (PEP) is defined as 

 

  2(%)FE H absorption
PEP

Weightofthesystem


                            (4) 

443

302

244

206

178
156

137

106 101 95 90 84 78 73

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

Fin thickness, mm

Time (s)

Hydrogen absorption (mg)

V
al

u
e

 
Fig. 5 Time to reach 90% saturation and H2 absorption quantity with 

fin thickness 
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Fig. 6  Variation of fin efficiency (FE) with time for different fin 

thicknesses (FT) 
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Fig. 7 Variation of FE and pep with FT 
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    The higher value of PEP confirms the design optimality in 

heat transfer and H2 quantity. The PEP value increases to 3 mm 

and decreases later (Fig. 7). Increasing FT reduces the H2 

absorption quantity and increases system weight, but the FE has 

a minimum effect after 3 mm. The optimum fin thickness of 3 

mm is selected for further investigation. 

C. Fin shape optimization 

    The fin shape changed from rectangular to three different (4 

to 2, 5 to 1, and 6 to 0 mm) tapered cross-sections, maintaining 

its weight constant. The fin tapering enhances the heat transfer 

near the fin base due to the larger thickness. But more MH with 

smaller FT decreases heat transfer towards the fin tip. As a 

result, high-temperature regions exist surrounding the fin, as 

shown in Fig.8. Fin tapering has minimal effect on both FE and 

PEP, as noticed in Fig. 9. FE increased from 0.75 to 0.77 when 

the FT changed from a constant thickness to a tapering 

thickness of 4 to 2 and 5 to 1 mm. Similarly, PEP also 

improved from 0.86 to 0.88. The fin tapering from 6 to 0 mm 

has the same FE and PEP as the fin with no tapering. For 

long-term usage, small improvement gives a greater advantage 

in terms of cost and energy savings. So, the optimal fin 

configuration can be chosen as 4 to 2 mm or  5 to 1 mm, 

depending on the manufacturing flexibility. 
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Fig. 8 Temperature and reacted fraction profile of different fin 

configurations at 300 s 
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Fig. 9 Effect of fin configuration on FE  and PEP 

V. CONCLUSIONS 

     The present study proposes an FE technique to optimize 

the fin thickness and shape in an MH-based hydrogen storage 

reactor. The temporal temperature profiles of fin and MH 

obtained from simulation data are used for calculating FE. 

The following outcomes are drawn from the study. 

 Increasing FT increases FE, but it has minimal effect after 

a thickness of 3 mm. 

 The FT of 3 mm is selected as optimum based on the  

PEP. 

 Tapering of the fin has minimal effect on FE and PEP. 
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