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Abstract— The rapid and precise volumetric segmentation of
incidentally detected renal lesions in computed tomography (CT)
images is crucial for effective diagnosis and treatment planning.
This study aims to introduce a three-dimensional (3D) deep
learning methodology designed to accurately segment abdominal
CT images of the kidneys, solid renal masses, and cystic renal
masses, while also evaluating its performance. The study utilized
an enhanced dataset comprising 880 cases. The dataset was
systematically partitioned utilizing k-fold cross-validation, and a
3D U-Net architecture was trained within the nnU-Net
framework, which is designed to automatically optimize for the
specific characteristics of the dataset and the segmentation task at
hand. A multidisciplinary study is hereby presented on kidney,
solid renal mass, and cystic renal mass segmentation using the 3D
U-Net, conducted with the participation of radiology and urology
specialists. The results indicate a notably high level of
performance, with an average accuracy of 95.18%, an average
precision of 86.09%0, an average recall of 90.90%, and an average
F1-score of 87.49%. Specifically, the high accuracy and recall
values suggest that the model has achieved a high level of success
in identifying relevant lesions. These impressive metrics
collectively underscore the robustness and clinical significance of
the segmentation methodology employed. These strong results
demonstrate the effective application of deep learning to this
critical domain and are intended to directly contribute to the
enhancement of diagnostic decision-making processes and the
improvement of patient care in clinical practice.

Keywords—Awrtificial Intelligence, Computed Tomography,
Renal Mass Segmentation, nn U-Net, 3D U-Net, Medical Image
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. INTRODUCTION

The kidneys, as vital organs, undertake several essential
physiological roles, including the regulation of fluid-electrolyte
balance and acid-base homeostasis, the excretion of metabolic
waste products, and the modulation of blood pressure [1].
Kidney cancer, is characterized by the uncontrolled
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proliferation of kidney cells, ultimately leading to the formation
of a neoplasm; renal cell carcinoma (RCC) is the leading
histological subtype of kidney cancer, accounting for
approximately 90% of all diagnosed cases. This form of cancer
has gained recognition as one of the mortal urological cancers,
underscoring the critical role of RCC in oncological research
and therapeutic advancements. Its prevalence draws attention to
the need for continued exploration into effective diagnostic and
treatment options and a comprehensive understanding of its
biological behavior [2]. CT imaging is a commonly used
diagnostic tool in the medical field. In particular, life sciences
demand the visualization of living tissues and soft matter with
high spatial resolution, often in three-dimensional or
four-dimensional data formats [2,3]. This imaging technique
leverages advanced computerized data processing algorithms to
produce cross-sectional images of internal anatomical
structures using X-ray technology [4]. The resultant data
facilitates the differentiation of tissue densities, thereby
illuminating various anatomical structures, including organs,
bones, blood vessels, as well as both benign and malignant
lesions. CT scans are particularly instrumental in the diagnosis
and evaluation of tumors, cysts, infections, and other
pathological conditions, particularly within the abdominal
cavity.

The causes of kidney cancer are complex and include various
risk factors such as obesity, hypertension, tobacco use, genetic
predispositions, and the malignant transformation of renal cells.
RCC represents the predominant histological subtype of kidney
cancer and is categorized as the third most prevalent
malignancy within the urological domain, accompanied by the
highest mortality rate among these cancers. Typically,
individuals diagnosed with non-metastatic RCC are
asymptomatic, which complicates early detection efforts.
However, with appropriate therapeutic interventions, a
complete remission is achievable for those with non-metastatic
disease. Conversely, the prognosis for patients with metastatic
RCC markedly decline [5]. Once clinical symptoms arise, the
likelihood of attaining curative treatment diminishes
significantly, often resulting in an expected survival duration
that is reduced to months. Moreover, there is no standardized
community screening protocol for the early identification of
kidney cancer. Approximately 70% of kidney cancer cases are
diagnosed incidentally during imaging studies, such as CT
scans, frequently conducted for unrelated medical complaints.
In contrast, about 10% of patients present at an advanced,
incurable stage of disease, primarily seeking medical assistance
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due to symptoms attributable to metastatic kidney cancer,
leading to diagnostic examinations at that juncture.

An analysis of the current literature showcases the effective
use of different deep learning (DL) techniques for the 3D
segmentation of medical images. Particularly, DL approaches
that rely exclusively on convolutional neural networks (CNN)
have been developed to differentiate and segment normal
kidney tissue from masses in abdominal CT scans. These
methodologies incorporate multi-channel functional layers,
setting them apart from earlier techniques. Within the scope of
the current work, the methodology intended for implementation
in this study is based on 3D-CNN algorithms, specifically
designed for processing 3D data structures [6], [7], [8]-

The influence of artificial intelligence (Al) and machine
learning (ML) on various aspects of the healthcare industry has
been significant. Recent technological advancements have
facilitated the analysis of vast data sets in a manner that is both
cost-effective and efficient. Research and literature in clinical
oncology highlight several advantages brought about by Al. In
recent years, sectors such as engineering, communications,
manufacturing, and healthcare have all experienced a
significant impact from Al and ML [9]. The initial phases of
this process can be outlined as follows: first, relevant features
must be identified and selected from the dataset. These features
may be quantitative and serve to clarify the information
conveyed by the data into vectors or arrays. Subsequently, the
information is incorporated into more comprehensive
predictive models, such as classifiers or regressors, which are
tailored to perform specific tasks [10].

Il. RELATED WORKS

A. Deep Learning in Imaging

The influence of artificial intelligence (Al) and machine
learning (ML) on various aspects of the healthcare industry has
been significant. Recent technological advancements have
facilitated the analysis of vast data sets in a manner that is both
cost-effective and efficient. Research and literature in clinical
oncology highlight several advantages brought about by Al. In
recent years, sectors such as engineering, communications,
manufacturing, and healthcare have all experienced a
significant impact from Al and ML [9]. The initial phases of
this process can be outlined as follows: first, relevant features
must be identified and selected from the dataset. These features
may be quantitative and serve to clarify the information
conveyed by the data into vectors or arrays. Subsequently, the
information is incorporated into more comprehensive
predictive models, such as classifiers or regressors, which are
tailored to perform specific tasks [10].

Recent studies emphasize the significant impact that DL
techniques have made in the realm of medical imaging,
particularly in enhancing the detection and segmentation of
kidney  masses. Initially, researchers focused on
two-dimensional (2D) CNNs, which laid a foundational
understanding of image analysis. However, attention has now
shifted to more sophisticated and complex architectures that
enable the accurate processing of 3D volumetric data. This
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progression not only enhances diagnostic accuracy but also
fosters a more thorough comprehension of anatomical
structures within the kidneys, ultimately leading to improved
patient outcomes.

TABLE |: SEGMENTATION AND CLASSIFICATION PERFORMANCE RESULTS ON
THE LITERATURE WITH DL ALGORITHMS

Author (Year)  Objective  Approach Dataset Perf(z;r()r;ance
Kidney
Patel et al. tumor 3D TRD KiTS21 Dice Score: 80.5
[11] segmenta  U-Net++ —81.6
tion
Kidney nnU-Net
Uhm et al. ' Custom )
[12] cgncer . ResNet-1 & TCGA AUC: 88.9, 85.5
diagnosis 01
Kidney 3D
He et al. [13] tumo.r_ ResNet-5 Custom Accuracy: 90.5
classifica 0
tion
Kidney
Erdim et al. tumor Random .
[14] classifica  Forest Custom Accuracy: 90.5
tion
Aronson et al Elr?]r;?y Dice Score: 93.4
' 3D U-Net  Customs (Kidney), 71.1
[15] segmenta
: (Tumor)
tion
Kidney . .
Zhao et al. tumor 3D MSS . ch_:e Score:96.9
KiTS19 (Kidney), 80.5
[16] segmenta  U-Net
tion (Tumor)

As outlined in Table 1, various models, particularly the 3D
U-Net ant the other algorithms, have shown considerable
promise in the field of medical imaging; however, the accurate
isolation of specific masses and cysts continues to pose a
significant challenge. Current research emphasizes the need for
supplementary processing steps to enhance diagnostic
accuracy. Building on these insights, this study presents
innovative advancements through the application of the
nnU-Net framework. This advanced approach not only
automates the fine-tuning of essential parameters but also
improves overall diagnostic precision, facilitating more reliable
identification of abnormalities in medical scans. In addition,
Table 1 summarizes the focus areas of these studies and the
performance outputs they achieved. Aronson et al. [15]
performed an impressive accuracy of 93.4% in segmenting
kidney tissue using the 3D U-Net architecture. However, their
findings indicated a significant drop in performance for tumor
segmentation, with an accuracy of just 71.1%. This discrepancy
highlights the inherent complexity associated with the diverse
morphologies of tumor structures, which greatly complicates
the segmentation process. In a comparable study, Zhao et al.
[16] achieved an impressive Dice score of 96.9% for kidney
segmentation on the KiTS19 dataset by utilizing the advanced
3D MSS U-Net architecture. This remarkable performance
underscores the model’s effectiveness in accurately delineating
kidney structures. However, it is important to note that the
model’s performance significantly diminished when applied to
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tumor segmentation, with the Dice score decreasing to 80.5%.
This contrast highlights the inherent challenges associated with
accurately segmenting tumors in comparison to healthy kidney
tissue.

Patel et al. [11] proposed a novel 3D Trans-Residual Dense
U-Net++ (3D TRD U-Net++) network for kidney tumor
segmentation, followed by a classification method based on
adaptive and attentive residual densenet with gated recurrent
unit (AA-RD-GRU). A unique aspect of their approach for
segmenting and classifying kidney regions as benign or
malignant was the optimization of network parameters using
the modified crayfish optimization algorithm (MCOA). The
segmentation accuracy was not explicitly stated, but the visual
results indicate values ranging from 96% to 97% across the two
datasets used. Uhm et al. utilized a diagnosis-focused approach
by integrating the nnU-Net framework with ResNet-101 and
spatial transformer networks (STNSs), resulting in an AUC
value of 88.9%. This approach underscores its significant
potential for enhancing clinical diagnosis. In contrast, studies
conducted by He et al. [13] utilizing 3D residual network-50
(ResNet-50) and Erdim et al. [14] applying Random Forest
concentrated on tumor classification rather than segmentation,
achieving an accuracy rate of 90.5% on custom datasets.

B. Prior segmentation methods (U-Net and nnUNet)

The U-Net model, originally developed by Ronneberger et al.
[17], is predicated on convolutional neural networks and is
tailored specifically for segmentation tasks in biomedical
imaging applications. The 3D U-Net architecture represents an
evolution of the original framework, adapted to address the
complexities associated with segmenting 2D images, such as
those acquired through CT scans. This adaptation underscores
the relevance of CNNs in enhancing diagnostic precision in
medical imaging. The architectural framework under
examination is based on a sophisticated network structure
characterized by multiple convolutional, sampling, and pooling
layers. The initial phase involves the processing of 3D images,
which are input into the network to undergo feature extraction
via convolution and pooling operations. This step effectively
transforms the images into feature maps with reduced
dimensionality, thereby enhancing the capacity for salient
feature extraction. Zhao et al. [16] demonstrated noteworthy
advancements in tumor segmentation within renal tissues by
employing a multi-scale approach that integrates the 3D U-Net
architecture. Nevertheless, they encountered limitations
reflected in lower performance metrics specifically pertaining
to tumor segmentation in isolation. In a contrasting study,
Pandey et al. [18] combined the 3D U-Net architecture with
active contouring techniques, revealing that the integration of
supplementary pre-processing or post-processing
methodologies significantly improves the accuracy of DL
algorithms in this domain.

This initial stage is commonly referred to as the encoder path.
Subsequently, the integration of low-level and high-level
features occurs through a connection path. This stage leverages
convolutional and pooling layers to generate higher-resolution
feature maps, utilizing the lowest resolution feature maps
obtained from the encoder path as a foundational input [11].
The following phase, known as the decoder path, integrates the
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feature maps derived from both the encoder and connection
paths to produce higher-resolution segmentation maps.
Concurrently, a backward path is delineated, during which
feature merging and resampling operations are executed to
yield the segmentation map. This procedure is instrumental in
recovering essential details that may have been lost during the
initial feature extraction process. Collectively, the encoder,
connection, and decoder paths operate synergistically to
achieve a more detailed and comprehensive representation in
the segmentation process, thereby enhancing the overall
efficacy and accuracy of the segmentation outcomes [11, 12].

I1l. MATERIALS AND METHODS

A. Dataset and Clinical Annotations

A comprehensive dataset comprising
contrast-enhanced abdominal CT scans, obtained from
Antalya Training and Research Hospital and Akdeniz
University Hospital, was curated with a focus on solid and
cystic renal masses. This initiative aims to improve our
understanding of these medical issues. Following the collection
of this valuable data, a thorough and systematic data cleaning
process was implemented to ensure the accuracy and reliability
of the findings. The dataset utilized in this study has been
meticulously assembled in accordance with rigorous quality
standards and demonstrates homogeneous characteristics, so no
additional preprocessing procedures were made. Previous
research has indicated that excessive pre-processing of already
clean and standardized datasets can result in a degradation of
the original image information, ultimately leading to
diminished model performance.

880

B. Data Annotations

Data labeling is a meticulous process that must be conducted
by experts. Contrast-enhanced abdominal CT scan offers
extensive information regarding the size, shape, location, and
internal structure of the kidneys. The amount of data produced
is contingent upon the technical specifications of the imaging
device and the scanning procedure employed. Size
measurements are typically performed using specifications
related to slice and matrix sizes.

Fig. 1. Annotated sample CT scan on MITK labeling platform.

For 3D cross-sectional data, this involves classifying the
cross-sections of 3D objects (such as 2D images) and assigning
appropriate labels to each section. In this study, medical
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imaging data was utilized, specifically focusing on the
abdominal CT images. Each section of these images was
carefully labeled by urology and radiology residents with at
least three years of experience to identify normal kidney tissue
and renal masses, and the labels were reviewed again by expert
radiologists.

Kidney scans are captured in one or more slices, with each
slice representing a cross-sectional image of the kidneys. The
resolution of the data is defined on a pixel basis, which is
influenced by the matrix size. To ensure high-quality imaging,
high-resolution abdominal CT images was utilized. The CT
images were initially obtained in the neuroimaging informatics
technology initiative (NIfTI) format, which is ideal for 3D
cross-sectional data. To ensure adherence to ethical standards
during data usage, a series of anonymization procedures were
implemented. The 3D data was segmented into slices, allowing
the creation of 2D images. Each slice was evaluated and labeled
independently. At this pivotal moment, it is essential to select
an appropriate labeling tool for the labeling phase. The medical
imaging interaction toolkit (MITK), a user-friendly,
open-source image labeling software tool was used. MITK
allows users to create annotated datasets and develop Al
annotation models for clinical evaluation.

Fig. 1 illustrates the annotated CT scanned data, which
comprises labels that delineate between normal renal tissue and
renal mass. In addition, the labeled dataset is subsequently
utilized within a specialized methodology for object
segmentation, facilitating improved analysis and interpretation
of the underlying anatomical structures and pathologies. The
presented software facilitates both interactive and automatic
segmentation of three-dimensional radiologic images through
the provision of sample models. This specialized software
enables the user to assign labels to 2D slices, thereby conferring
distinct classification attributes. The label categories utilized
for the identification of objects to be segmented within the
dataset encompass “kidneys” and “kidney cysts”. Such
functionalities are instrumental in enhancing the accuracy and
efficiency of image analysis in medical diagnostics.

The dataset is rigorously divided using k-fold
cross-validation (CV), with an example showcasing five
distinct folds. This method ensures a robust evaluation by
allowing each fold to serve as a testing set while the remaining
folds contribute to the training process. Prior to the training and
validation phases, several essential pre-processing steps are
implemented. These steps include normalization, which adjusts
the data to a common scale; resampling, which helps to balance
the data by adjusting the representation of different classes; and
augmentation, which enhances the dataset by creating
variations of the existing data. Together, these techniques
prepare the dataset for a more effective and accurate modeling
process.

C. Normalization and Resampling

The nnU-Net framework integrates preprocessing
methodologies that are specifically designed to cater to the
unique characteristics of distinct datasets. This tailored
approach not only ensures data consistency but also enhances
the optimization of model training processes. The
implementation of these preprocessing steps plays a crucial
role in influencing the generalizability and performance of
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the resulting models. Normalization is a critical process in
medical imaging that standardizes the pixel or voxel values of
images to a consistent range. This procedure is essential for
mitigating variations in density that may occur due to
discrepancies in scanning equipment, imaging protocols, or
patient characteristics [12].

D. Model Architecture

CNN algorithms are inherently designed to conduct
automatic feature extraction from raw image data. This
end-to-end learning framework allows the model to develop
its own pre-processing methodologies adaptively. Moreover,
it is anticipated that the outputs generated from this study will
be integrated into the evaluation process with minimal
pre-processing applied to CT images sourced from actual
clinical environments. Therefore, implementing excessive
enhancement or artificial modification techniques may lead to
discrepancies between the model outputs and the real-world
data encountered in clinical practice.

Step 1: Data preparatior Step 2: Data preprocessing tep 3: nnU-Net F

Encoder Bottleneck Decoder

(Downsampiing) || (Deep features) (Upsampiing)
. \ . W
Tl et/ oz s Adtomasc hyper passmeter haing o

Ij 5 - ‘!;'r/ Y Loss function opteruzstion 15}
- ' . 3 & vabdaton Q . . -
gss °
& - ° A e

Fig. 2. Overview of the proposed 3D DL methodology for automated
segmentation of kidneys and kidney cysts in CT abdominal scans.

In this regard, manual pre-processing interventions could
impose limitations on the model’s intrinsic learning capacity.
At this stage, the collected dataset has been assessed and
integrated into the normalization and pre-processing protocols
as required by the algorithms.

The aim of this study is to attain a high level of accuracy in
the segmentation of 3D images by employing the 3D U-Net
[11] architecture, a prominent model within DL algorithms.
Specifically, this research focuses on the kidneys as the ROI,
which will be semantically distinguished from the surrounding
background utilizing the no-new-Net (nn U-Net) [20]
framework. As a result, ancillary structures, such as adjacent
tissues and osseous elements, which may introduce noise or
complexity, will be excluded from subsequent analyses,
particularly during the segmentation processes aimed at
identifying cysts and masses. The nnU-Net framework
represents a significant advancement in automated DL
methodologies, specifically designed to optimize architecture,
pre-processing, training, and inference parameters tailored to
the characteristics of a particular task or dataset. This
automation effectively mitigates the need for manual
hyper-parameter tuning, thereby not only conserving valuable
time but also enhancing overall model performance. The
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framework exemplifies a paradigm shift in the application of
neural networks, facilitating improved outcomes in various
medical imaging and segmentation tasks.

IV. EXPERIMENTS AND RESULTS

A. Training Procedure

The training process for deep learning models was conducted
on a workstation equipped with advanced hardware features to
process 3D volumetric data, which requires high computational
power. The hardware infrastructure, including an Intel (R) Core
(TM) i9-14900KF processor and 64 GB RAM, demonstrates
the robust setup supporting our work. An NVIDIA GeForce
RTX 4090 GPU with 24 GB VRAM was used to accelerate
training and handle large data blocks efficiently, ensuring
reliable performance.

The dataset, containing a total of 880 cases for data
partitioning and validation, was split into two to measure the
model’s generalization ability. Further, a 5-fold CV strategy
was applied to prevent overfitting and ensure a robust
evaluation. Before training, basic preprocessing steps,
including intensity normalization, resampling, and data
augmentation, were applied to the data to make the dataset most
suitable for the model. Using the nnU-Net framework for
hyperparameter optimization, critical hyperparameters such as
learning rate, batch size, and network topology were
automatically  optimized according to the specific
characteristics of the dataset. Throughout the training process,
the loss function was optimized to improve segmentation
performance. The model was trained using an end-to-end
approach to learn the boundaries of renal masses and normal
tissues as accurately as possible. Prior to training, basic
preprocessing steps, including intensity normalization,
resampling, and data augmentation, were applied to the data to
make the dataset most suitable for the model [20] .

B. Performance Evaluation

The existing literature illustrates that various performance
metrics are employed to assess the effectiveness of DL
algorithms. Among the most recognized metrics are accuracy,
precision, recall, F1-score, and dice score as in Equation 1,
Equation 2, Equation 3, Equation 4, Equation 5 and Equation 6.
In classification and segmentation tasks, accuracy is often
regarded as a fundamental evaluation metric, defined as the
ratio of correctly classified examples. However, relying solely
on accuracy can be inadequate and misleading, particularly in
scenarios involving imbalanced classifications [21]. To
overcome this limitation, it is also crucial to consider
other commonly used metrics for biomedical image
segmentation. One such metric is the overlap ratio, which
evaluates segmentation performance by measuring how closely
the predicted mask corresponds to the true mask [22].

TP+TN

}Accuracy = (2)
TP + TN + FP + FN
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TP
recision = ——— (3)
TP+ FP
TP
}Recall = (4)
TP + FN
PrecisionxRecall
1—score =2x — 5)
Precision + Recall
area of overlag
ice score = 2 X —m— (6)
total area

C. Quantitative and Qualitative Results

A total of 702 cases were designated for training, representing
80% of the overall dataset, while 178 cases (20%) were set
aside for testing. The training set is utilized for optimizing the
model parameters throughout the learning process, whereas the
test set is employed to evaluate the model’s generalizability on
previously unseen data. This configuration allows for a more
realistic measurement of model performance, helping to avoid
overfitting to the training data. Additionally, key parameters
such as class labels, modality information, and data paths are
established, thereby providing all necessary configurations for
the nnU-Net training pipeline. Following the training, the 3D
U-Net model achieved an impressive overall accuracy of
95.18%, as assessed through the evaluation of 178 patient
cases. The total number of voxels, excluding the background,
reached 30,106,797. This setup may enhance model
performance, attributed to the increased number of cases and
voxels.

Table 2 presented below offers a comparative analysis of the
performance of the model across three primary segmented
classes: kidney, solid renal masses (AML, RCC, oncocytoma)
and simple cystic renal masses. Furthermore, it encompasses
the overall mean performance metrics for each class. The
evaluation employs standard metrics, including accuracy,
precision, recall, and F1-score, which enhance the transparency
of the assessment. This rigorous approach ensures that the
audience gains confidence in the comprehensiveness and
validity of the evaluation process. The table presents the
metrics of accuracy, precision, recall, and the F1-score for each
class, along with the aggregate mean, thereby substantiating the
model’s substantial capacity to differentiate between diverse
lesion pathologies.

TABLE II: SEGMENTATION PERFORMANCE METRICS USING 3D U-NET WITHIN
THE NNU-NET FRAMEWORK, SHOWCASING THE OVERALL AVERAGE RESULTS
ACROSS THE KIDNEY AND RENAL MASS CLASSES

Accuracy  Precision Recall 0
Class type %) %) %) F1-score (%)
Kidney 91.28 92.36 95.58 93.94
Solid renal 97.06 88.54 78.70 81.88
masses
Simple cystic - o7 5 77.38 98.42 86.64
renal masses
Average 95.18 86.09 90.90 87.49

Fig. 3 provides a visualization of the dice score (as in
Equation 6) values utilized to evaluate expert labels against
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actual predictions, emphasizing the significance of thorough
assessment in segmentation studies of the developed 3D U-Net
model. The dice score is a widely adopted metric in these
studies, measuring the overlap ratio between predicted positive
pixels and actual positive pixels. In this figure, the left column
illustrates the ground-truth labels (GT), the middle column
displays the model’s predictions, and the right column features
the overlay of both masks (red representing GT and blue
denoting the predictions). This comparative analysis is
fundamental in determining the degree of consonance between
the outputs generated by the model and the GT labels
meticulously curated by domain experts. Such an evaluation
not only underlines the performance of model but also provides
insights into its reliability for practical applications. The
analysis of Fig. 3 (c) demonstrates that the model exhibits a
significant degree of overlap between renal and cystic
structures, underscoring a substantial congruence between
these anatomical features. The delineation of boundaries
appears to be precise, particularly in the context of cystic renal
mass segmentation.

L

(a) (b) (c)

Fig. 3. Visual comparison of expert ground truth labels and the
segmentation prediction of model in a representative case. (a) The
expert-annotated segmentation mask representing the true boundaries,
(b) The segmentation mask output.

Notably, while some minor instances of over-segmentation
are observed in specific regions of the estimation mask,
indicated by small areas of purple/blue, and
under-segmentation is noted in other regions of the GT mask,
represented by small areas of pink/red, the overall alignment
in segmentation rates suggests that the model maintains a
high level of reliability. Furthermore, the model effectively
identifies the clinical significance of the lesions, as indicated
by the recall metrics. The qualitative assessment aligns with
the impressive dice coefficients (e.g., 0.919 for kidney and
0.924 for kidney cyst), thereby visually reinforcing the
clinical applicability of the model.

The selected sample sections used to visually assess the
model’s performance are displayed in Fig. 4s. This
visualization includes raw images (a), an overlay view with
masks superimposed on the original anatomy (b), and isolated
masks with the background noise removed (c). The color
coding, organized according to the specifications of clinical
experts, represents the following classes:

e Green corresponds tonormal renal tissue, indicating
healthy and functioning kidney structures.

¢ Blue corresponds to cystic renal masses, delineating the
visual margins between these lesions and the surrounding
healthy tissue.

eRed corresponds to solid renal masses, such as AML,

facilitating their clear identification and analysis in
diagnostic imaging.
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The background removing process illustrated in Fig 4 (c)
removes the complexities posed by surrounding tissues and
bone structures, enabling a concentrated focus on the relevant
lesions. Visual analyses reveal the model’s recall in
accurately defining lesion boundaries and its capability to
effectively differentiate between various pathological tissues
(cystic versus solid). These qualitative findings support the
average accuracy rate of 95.18% obtained and visually
confirm the system’s applicability in clinical decision support
processes.

(e)

()

Fig. 4. Qualitative assessment of the segmentation model, (a) original

CT images, (b) overlay of predicted segmentation masks, and (c)
isolated segmentation masks with background removal.

As demonstrated in Table 1, Aronson et al. [15] reported a
Dice score of 93.4% for kidney tissues, while their score for
tumors was noticeably lower at 71.1%. Similarly, Zhao et al.
[16] achieved a score of 96.9% for kidneys, but only 80.5%
for tumors. In contrast, our model attained an impressive
accuracy of 97.06% for solid masses and 97.20% for cystic
masses, showcasing consistently high performance across
various complex pathological categories. A significant
strength of this research is its use of a large, curated dataset
comprising 880 contrast-enhanced CT scans, significantly
surpassing the custom datasets typical of many previous
studies. By emphasizing the extensive nature of this dataset,
we aim to foster confidence in the audience regarding the
model’s robustness and reliability across various scenarios.
The model exhibits an impressive recall rate of 98.42% for
cystic masses, demonstrating the nnU-Net’s proficiency in
detecting fluid-filled lesions, which are often discovered
incidentally. However, a notable limitation is apparent in the
recall rate for solid renal masses (78.70%) and the precision
rate for cystic renal masses (77.38%). This indicates that
while the model seldom overlooks a cyst, it may occasionally
over-segment cystic regions or under-segment solid
neoplasms, likely due to the overlapping intensity profiles
encountered in more complex cases.

V. CONCLUSION
Building upon the quantitative findings, the qualitative

success illustrated in Fig. 4 provides medical professionals with
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confidence that the model’s outputs consistently align with the
anatomical boundaries established by expert radiologists. By
accurately distinguishing between solid and cystic masses, the
system aids urologists and radiologists in their decision-making
processes. The capability to isolate these structures through
background removal enhances trust and confidence, allowing
for more precise volumetric analysis, which is essential for
monitoring lesion growth and planning surgical interventions.
This study presents a methodology grounded in a 3D U-Net
architecture, implemented within the nnU-Net framework. The
aim of this approach is to enable the automatic detection of
normal kidney tissues, solid renal masses, and cystic renal mass
lesions in abdominal CT scans. An analysis conducted on a
comprehensive and carefully curated dataset, consisting of 880
cases, yielded an average accuracy of 95.18%, a precision of
86.09%, and a recall of 90.90%. These results underscore the
clinical significance of the 3D U-Net approach, intended to
inspire both healthcare professionals and Al researchers by
showcasing its potential for real-world applications. Upon
analyzing the model’s performance by class, it is evident that
the exceptionally high recall rate of 98.42% for cystic renal
masses highlights the model’s remarkable capability to detect
fluid-filled lesions, which should instill confidence among
researchers regarding its strengths. Conversely, the lower recall
rate for solid renal masses (78.70%) and the reduced specificity
rate for renal cystic masses (77.38%) indicate an imbalance in
the results. This discrepancy is believed to arise from the
complex morphological structures of the masses and the
similarities in their tissue densities. To address this imbalance
and enhance outcomes in future studies, targeted data
augmentation techniques will be implemented, alongside the
optimization of loss functions to minimize class imbalances.
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