
 

Abstract— The rapid and precise volumetric segmentation of 

incidentally detected renal lesions in computed tomography (CT) 

images is crucial for effective diagnosis and treatment planning. 

This study aims to introduce a three-dimensional (3D) deep 

learning methodology designed to accurately segment abdominal 

CT images of the kidneys, solid renal masses, and cystic renal 

masses, while also evaluating its performance. The study utilized 

an enhanced dataset comprising 880 cases. The dataset was 

systematically partitioned utilizing k-fold cross-validation, and a 

3D U-Net architecture was trained within the nnU-Net 

framework, which is designed to automatically optimize for the 

specific characteristics of the dataset and the segmentation task at 

hand. A multidisciplinary study is hereby presented on kidney, 

solid renal mass, and cystic renal mass segmentation using the 3D 

U-Net, conducted with the participation of radiology and urology 

specialists. The results indicate a notably high level of 

performance, with an average accuracy of 95.18%, an average 

precision of 86.09%, an average recall of 90.90%, and an average 

F1-score of 87.49%. Specifically, the high accuracy and recall 

values suggest that the model has achieved a high level of success 

in identifying relevant lesions. These impressive metrics 

collectively underscore the robustness and clinical significance of 

the segmentation methodology employed. These strong results 

demonstrate the effective application of deep learning to this 

critical domain and are intended to directly contribute to the 

enhancement of diagnostic decision-making processes and the 

improvement of patient care in clinical practice. 
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Renal Mass Segmentation, nn U-Net, 3D U-Net, Medical Image 
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I. INTRODUCTION 

The kidneys, as vital organs, undertake several essential 

physiological roles, including the regulation of fluid-electrolyte 

balance and acid-base homeostasis, the excretion of metabolic 

waste products, and the modulation of blood pressure [1]. 

Kidney cancer, is characterized by the uncontrolled 
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proliferation of kidney cells, ultimately leading to the formation 

of a neoplasm; renal cell carcinoma (RCC) is the leading 

histological subtype of kidney cancer, accounting for 

approximately 90% of all diagnosed cases. This form of cancer 

has gained recognition as one of the mortal urological cancers, 

underscoring the critical role of RCC in oncological research 

and therapeutic advancements. Its prevalence draws attention to 

the need for continued exploration into effective diagnostic and 

treatment options and a comprehensive understanding of its 

biological behavior [2]. CT imaging is a commonly used 

diagnostic tool in the medical field. In particular, life sciences 

demand the visualization of living tissues and soft matter with 

high spatial resolution, often in three-dimensional or 

four-dimensional data formats [2,3]. This imaging technique 

leverages advanced computerized data processing algorithms to 

produce cross-sectional images of internal anatomical 

structures using X-ray technology [4]. The resultant data 

facilitates the differentiation of tissue densities, thereby 

illuminating various anatomical structures, including organs, 

bones, blood vessels, as well as both benign and malignant 

lesions. CT scans are particularly instrumental in the diagnosis 

and evaluation of tumors, cysts, infections, and other 

pathological conditions, particularly within the abdominal 

cavity.  

The causes of kidney cancer are complex and include various 

risk factors such as obesity, hypertension, tobacco use, genetic 

predispositions, and the malignant transformation of renal cells. 

RCC represents the predominant histological subtype of kidney 

cancer and is categorized as the third most prevalent 

malignancy within the urological domain, accompanied by the 

highest mortality rate among these cancers. Typically, 

individuals diagnosed with non-metastatic RCC are 

asymptomatic, which complicates early detection efforts. 

However, with appropriate therapeutic interventions, a 

complete remission is achievable for those with non-metastatic 

disease. Conversely, the prognosis for patients with metastatic 

RCC markedly decline [5]. Once clinical symptoms arise, the 

likelihood of attaining curative treatment diminishes 

significantly, often resulting in an expected survival duration 

that is reduced to months. Moreover, there is no standardized 

community screening protocol for the early identification of 

kidney cancer. Approximately 70% of kidney cancer cases are 

diagnosed incidentally during imaging studies, such as CT 

scans, frequently conducted for unrelated medical complaints. 

In contrast, about 10% of patients present at an advanced, 

incurable stage of disease, primarily seeking medical assistance 
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due to symptoms attributable to metastatic kidney cancer, 

leading to diagnostic examinations at that juncture.  

An analysis of the current literature showcases the effective 

use of different deep learning (DL) techniques for the 3D 

segmentation of medical images. Particularly, DL approaches 

that rely exclusively on convolutional neural networks (CNN) 

have been developed to differentiate and segment normal 

kidney tissue from masses in abdominal CT scans. These 

methodologies incorporate multi-channel functional layers, 

setting them apart from earlier techniques. Within the scope of 

the current work, the methodology intended for implementation 

in this study is based on 3D-CNN algorithms, specifically 

designed for processing 3D data structures [6], [7], [8].  

The influence of artificial intelligence (AI) and machine 

learning (ML) on various aspects of the healthcare industry has 

been significant. Recent technological advancements have 

facilitated the analysis of vast data sets in a manner that is both 

cost-effective and efficient. Research and literature in clinical 

oncology highlight several advantages brought about by AI. In 

recent years, sectors such as engineering, communications, 

manufacturing, and healthcare have all experienced a 

significant impact from AI and ML [9]. The initial phases of 

this process can be outlined as follows: first, relevant features 

must be identified and selected from the dataset. These features 

may be quantitative and serve to clarify the information 

conveyed by the data into vectors or arrays. Subsequently, the 

information is incorporated into more comprehensive 

predictive models, such as classifiers or regressors, which are 

tailored to perform specific tasks [10]. 

II. RELATED WORKS 

A. Deep Learning in Imaging 

The influence of artificial intelligence (AI) and machine 

learning (ML) on various aspects of the healthcare industry has 

been significant. Recent technological advancements have 

facilitated the analysis of vast data sets in a manner that is both 

cost-effective and efficient. Research and literature in clinical 

oncology highlight several advantages brought about by AI. In 

recent years, sectors such as engineering, communications, 

manufacturing, and healthcare have all experienced a 

significant impact from AI and ML [9]. The initial phases of 

this process can be outlined as follows: first, relevant features 

must be identified and selected from the dataset. These features 

may be quantitative and serve to clarify the information 

conveyed by the data into vectors or arrays. Subsequently, the 

information is incorporated into more comprehensive 

predictive models, such as classifiers or regressors, which are 

tailored to perform specific tasks [10]. 

Recent studies emphasize the significant impact that DL 

techniques have made in the realm of medical imaging, 

particularly in enhancing the detection and segmentation of 

kidney masses. Initially, researchers focused on 

two-dimensional (2D) CNNs, which laid a foundational 

understanding of image analysis. However, attention has now 

shifted to more sophisticated and complex architectures that 

enable the accurate processing of 3D volumetric data. This 

progression not only enhances diagnostic accuracy but also 

fosters a more thorough comprehension of anatomical 

structures within the kidneys, ultimately leading to improved 

patient outcomes.  

 
TABLE I: SEGMENTATION AND CLASSIFICATION PERFORMANCE RESULTS ON 

THE LITERATURE WITH DL ALGORITHMS 

Author (Year) Objective Approach Dataset 
Performance 

(%) 

Patel et al. 

[11] 

Kidney 

tumor 

segmenta

tion 

3D TRD 

U-Net++ 
KiTS21 

Dice Score: 80.5 

– 81.6 

Uhm et al. 

[12] 

Kidney 

cancer 

diagnosis 

nnU-Net, 

ResNet-1

01 

Custom 

& TCGA 
AUC: 88.9, 85.5 

He et al. [13] 

Kidney 

tumor 

classifica

tion 

3D 

ResNet-5

0 
Custom Accuracy: 90.5 

Erdim et al. 

[14] 

Kidney 

tumor 

classifica

tion 

Random 

Forest 
Custom Accuracy: 90.5 

Aronson et al. 

[15] 

Kidney 

tumor 

segmenta

tion 

3D U-Net Customs 

Dice Score: 93.4 

(Kidney), 71.1 

(Tumor) 

Zhao et al. 

[16] 

Kidney 

tumor 

segmenta

tion 

3D MSS 

U-Net 
KiTS19 

Dice Score:96.9 

(Kidney), 80.5 

(Tumor) 

     

  

As outlined in Table 1, various models, particularly the 3D 

U-Net ant the other algorithms, have shown considerable 

promise in the field of medical imaging; however, the accurate 

isolation of specific masses and cysts continues to pose a 

significant challenge. Current research emphasizes the need for 

supplementary processing steps to enhance diagnostic 

accuracy. Building on these insights, this study presents 

innovative advancements through the application of the 

nnU-Net framework. This advanced approach not only 

automates the fine-tuning of essential parameters but also 

improves overall diagnostic precision, facilitating more reliable 

identification of abnormalities in medical scans. In addition, 

Table 1 summarizes the focus areas of these studies and the 

performance outputs they achieved. Aronson et al. [15] 

performed an impressive accuracy of 93.4% in segmenting 

kidney tissue using the 3D U-Net architecture. However, their 

findings indicated a significant drop in performance for tumor 

segmentation, with an accuracy of just 71.1%. This discrepancy 

highlights the inherent complexity associated with the diverse 

morphologies of tumor structures, which greatly complicates 

the segmentation process. In a comparable study, Zhao et al. 

[16] achieved an impressive Dice score of 96.9% for kidney 

segmentation on the KiTS19 dataset by utilizing the advanced 

3D MSS U-Net architecture. This remarkable performance 

underscores the model’s effectiveness in accurately delineating 

kidney structures. However, it is important to note that the 

model’s performance significantly diminished when applied to 
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tumor segmentation, with the Dice score decreasing to 80.5%. 

This contrast highlights the inherent challenges associated with 

accurately segmenting tumors in comparison to healthy kidney 

tissue.  

Patel et al. [11] proposed a novel 3D Trans-Residual Dense 

U-Net++ (3D TRD U-Net++) network for kidney tumor 

segmentation, followed by a classification method based on 

adaptive and attentive residual densenet with gated recurrent 

unit (AA-RD-GRU). A unique aspect of their approach for 

segmenting and classifying kidney regions as benign or 

malignant was the optimization of network parameters using 

the modified crayfish optimization algorithm (MCOA). The 

segmentation accuracy was not explicitly stated, but the visual 

results indicate values ranging from 96% to 97% across the two 

datasets used. Uhm et al. utilized a diagnosis-focused approach 

by integrating the nnU-Net framework with ResNet-101 and 

spatial transformer networks (STNs), resulting in an AUC 

value of 88.9%. This approach underscores its significant 

potential for enhancing clinical diagnosis. In contrast, studies 

conducted by He et al. [13] utilizing 3D residual network-50 

(ResNet-50) and Erdim et al. [14] applying Random Forest 

concentrated on tumor classification rather than segmentation, 

achieving an accuracy rate of 90.5% on custom datasets. 

B. Prior segmentation methods (U-Net and nnUNet) 

The U-Net model, originally developed by Ronneberger et al. 

[17], is predicated on convolutional neural networks and is 

tailored specifically for segmentation tasks in biomedical 

imaging applications. The 3D U-Net architecture represents an 

evolution of the original framework, adapted to address the 

complexities associated with segmenting 2D images, such as 

those acquired through CT scans. This adaptation underscores 

the relevance of CNNs in enhancing diagnostic precision in 

medical imaging. The architectural framework under 

examination is based on a sophisticated network structure 

characterized by multiple convolutional, sampling, and pooling 

layers. The initial phase involves the processing of 3D images, 

which are input into the network to undergo feature extraction 

via convolution and pooling operations. This step effectively 

transforms the images into feature maps with reduced 

dimensionality, thereby enhancing the capacity for salient 

feature extraction. Zhao et al. [16] demonstrated noteworthy 

advancements in tumor segmentation within renal tissues by 

employing a multi-scale approach that integrates the 3D U-Net 

architecture. Nevertheless, they encountered limitations 

reflected in lower performance metrics specifically pertaining 

to tumor segmentation in isolation. In a contrasting study, 

Pandey et al. [18] combined the 3D U-Net architecture with 

active contouring techniques, revealing that the integration of 

supplementary pre-processing or post-processing 

methodologies significantly improves the accuracy of DL 

algorithms in this domain. 

This initial stage is commonly referred to as the encoder path. 

Subsequently, the integration of low-level and high-level 

features occurs through a connection path. This stage leverages 

convolutional and pooling layers to generate higher-resolution 

feature maps, utilizing the lowest resolution feature maps 

obtained from the encoder path as a foundational input [11]. 

The following phase, known as the decoder path, integrates the 

feature maps derived from both the encoder and connection 

paths to produce higher-resolution segmentation maps. 

Concurrently, a backward path is delineated, during which 

feature merging and resampling operations are executed to 

yield the segmentation map. This procedure is instrumental in 

recovering essential details that may have been lost during the 

initial feature extraction process. Collectively, the encoder, 

connection, and decoder paths operate synergistically to 

achieve a more detailed and comprehensive representation in 

the segmentation process, thereby enhancing the overall 

efficacy and accuracy of the segmentation outcomes [11, 12]. 

III. MATERIALS AND METHODS 

A. Dataset and Clinical Annotations 

  A comprehensive dataset comprising 880 

contrast-enhanced abdominal CT scans, obtained from 

Antalya Training and Research Hospital and Akdeniz 

University Hospital, was curated with a focus on solid and 

cystic renal masses. This initiative aims to improve our 

understanding of these medical issues. Following the collection 

of this valuable data, a thorough and systematic data cleaning 

process was implemented to ensure the accuracy and reliability 

of the findings. The dataset utilized in this study has been 

meticulously assembled in accordance with rigorous quality 

standards and demonstrates homogeneous characteristics, so no 

additional preprocessing procedures were made. Previous 

research has indicated that excessive pre-processing of already 

clean and standardized datasets can result in a degradation of 

the original image information, ultimately leading to 

diminished model performance. 

B. Data Annotations 

Data labeling is a meticulous process that must be conducted 

by experts. Contrast-enhanced abdominal CT scan offers 

extensive information regarding the size, shape, location, and 

internal structure of the kidneys. The amount of data produced 

is contingent upon the technical specifications of the imaging 

device and the scanning procedure employed. Size 

measurements are typically performed using specifications 

related to slice and matrix sizes.  

 

 
Fig. 1. Annotated sample CT scan on MITK labeling platform. 

 

For 3D cross-sectional data, this involves classifying the 

cross-sections of 3D objects (such as 2D images) and assigning 

appropriate labels to each section. In this study, medical 
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imaging data was utilized, specifically focusing on the 

abdominal CT images. Each section of these images was 

carefully labeled by urology and radiology residents with at 

least three years of experience to identify normal kidney tissue 

and renal masses, and the labels were reviewed again by expert 

radiologists. 

Kidney scans are captured in one or more slices, with each 

slice representing a cross-sectional image of the kidneys. The 

resolution of the data is defined on a pixel basis, which is 

influenced by the matrix size. To ensure high-quality imaging, 

high-resolution abdominal CT images was utilized. The CT 

images were initially obtained in the neuroimaging informatics 

technology initiative (NIfTI) format, which is ideal for 3D 

cross-sectional data. To ensure adherence to ethical standards 

during data usage, a series of anonymization procedures were 

implemented. The 3D data was segmented into slices, allowing 

the creation of 2D images. Each slice was evaluated and labeled 

independently. At this pivotal moment, it is essential to select 

an appropriate labeling tool for the labeling phase. The medical 

imaging interaction toolkit (MITK), a user-friendly, 

open-source image labeling software tool was used. MITK 

allows users to create annotated datasets and develop AI 

annotation models for clinical evaluation. 

Fig. 1 illustrates the annotated CT scanned data, which 

comprises labels that delineate between normal renal tissue and 

renal mass. In addition, the labeled dataset is subsequently 

utilized within a specialized methodology for object 

segmentation, facilitating improved analysis and interpretation 

of the underlying anatomical structures and pathologies. The 

presented software facilitates both interactive and automatic 

segmentation of three-dimensional radiologic images through 

the provision of sample models. This specialized software 

enables the user to assign labels to 2D slices, thereby conferring 

distinct classification attributes. The label categories utilized 

for the identification of objects to be segmented within the 

dataset encompass “kidneys” and “kidney cysts”. Such 

functionalities are instrumental in enhancing the accuracy and 

efficiency of image analysis in medical diagnostics. 

The dataset is rigorously divided using k-fold 

cross-validation (CV), with an example showcasing five 

distinct folds. This method ensures a robust evaluation by 

allowing each fold to serve as a testing set while the remaining 

folds contribute to the training process. Prior to the training and 

validation phases, several essential pre-processing steps are 

implemented. These steps include normalization, which adjusts 

the data to a common scale; resampling, which helps to balance 

the data by adjusting the representation of different classes; and 

augmentation, which enhances the dataset by creating 

variations of the existing data. Together, these techniques 

prepare the dataset for a more effective and accurate modeling 

process. 

C. Normalization and Resampling 

The nnU-Net framework integrates preprocessing 

methodologies that are specifically designed to cater to the 

unique characteristics of distinct datasets. This tailored 

approach not only ensures data consistency but also enhances 

the optimization of model training processes. The 

implementation of these preprocessing steps plays a crucial 

role in influencing the generalizability and performance of 

the resulting models. Normalization is a critical process in 

medical imaging that standardizes the pixel or voxel values of 

images to a consistent range. This procedure is essential for 

mitigating variations in density that may occur due to 

discrepancies in scanning equipment, imaging protocols, or 

patient characteristics [12]. 

D. Model Architecture 

CNN algorithms are inherently designed to conduct 

automatic feature extraction from raw image data. This 

end-to-end learning framework allows the model to develop 

its own pre-processing methodologies adaptively. Moreover, 

it is anticipated that the outputs generated from this study will 

be integrated into the evaluation process with minimal 

pre-processing applied to CT images sourced from actual 

clinical environments. Therefore, implementing excessive 

enhancement or artificial modification techniques may lead to 

discrepancies between the model outputs and the real-world 

data encountered in clinical practice.  

 

  

Fig. 2. Overview of the proposed 3D DL methodology for automated 

segmentation of kidneys and kidney cysts in CT abdominal scans. 

 

In this regard, manual pre-processing interventions could 

impose limitations on the model’s intrinsic learning capacity. 

At this stage, the collected dataset has been assessed and 

integrated into the normalization and pre-processing protocols 

as required by the algorithms. 

The aim of this study is to attain a high level of accuracy in 

the segmentation of 3D images by employing the 3D U-Net 

[11] architecture, a prominent model within DL algorithms. 

Specifically, this research focuses on the kidneys as the ROI, 

which will be semantically distinguished from the surrounding 

background utilizing the no-new-Net (nn U-Net) [20] 

framework. As a result, ancillary structures, such as adjacent 

tissues and osseous elements, which may introduce noise or 

complexity, will be excluded from subsequent analyses, 

particularly during the segmentation processes aimed at 

identifying cysts and masses. The nnU-Net framework 

represents a significant advancement in automated DL 

methodologies, specifically designed to optimize architecture, 

pre-processing, training, and inference parameters tailored to 

the characteristics of a particular task or dataset. This 

automation effectively mitigates the need for manual 

hyper-parameter tuning, thereby not only conserving valuable 

time but also enhancing overall model performance. The 
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framework exemplifies a paradigm shift in the application of 

neural networks, facilitating improved outcomes in various 

medical imaging and segmentation tasks. 

IV. EXPERIMENTS AND RESULTS  

A. Training Procedure 

The training process for deep learning models was conducted 

on a workstation equipped with advanced hardware features to 

process 3D volumetric data, which requires high computational 

power. The hardware infrastructure, including an Intel (R) Core 

(TM) i9-14900KF processor and 64 GB RAM, demonstrates 

the robust setup supporting our work. An NVIDIA GeForce 

RTX 4090 GPU with 24 GB VRAM was used to accelerate 

training and handle large data blocks efficiently, ensuring 

reliable performance.  

The dataset, containing a total of 880 cases for data 

partitioning and validation, was split into two to measure the 

model’s generalization ability. Further, a 5-fold CV strategy 

was applied to prevent overfitting and ensure a robust 

evaluation. Before training, basic preprocessing steps, 

including intensity normalization, resampling, and data 

augmentation, were applied to the data to make the dataset most 

suitable for the model. Using the nnU-Net framework for 

hyperparameter optimization, critical hyperparameters such as 

learning rate, batch size, and network topology were 

automatically optimized according to the specific 

characteristics of the dataset. Throughout the training process, 

the loss function was optimized to improve segmentation 

performance. The model was trained using an end-to-end 

approach to learn the boundaries of renal masses and normal 

tissues as accurately as possible. Prior to training, basic 

preprocessing steps, including intensity normalization, 

resampling, and data augmentation, were applied to the data to 

make the dataset most suitable for the model [20] . 

B. Performance Evaluation 

The existing literature illustrates that various performance 

metrics are employed to assess the effectiveness of DL 

algorithms. Among the most recognized metrics are accuracy, 

precision, recall, F1-score, and dice score as in Equation 1, 

Equation 2, Equation 3, Equation 4, Equation 5 and Equation 6. 

In classification and segmentation tasks, accuracy is often 

regarded as a fundamental evaluation metric, defined as the 

ratio of correctly classified examples. However, relying solely 

on accuracy can be inadequate and misleading, particularly in 

scenarios involving imbalanced classifications [21]. To 

overcome this limitation, it is also crucial to consider 

other commonly used metrics for biomedical image 

segmentation. One such metric is the overlap ratio, which 

evaluates segmentation performance by measuring how closely 

the predicted mask corresponds to the true mask [22]. 

 

 
(2) 

 

 
(3) 

 

 
(4) 

 

 
(5) 

 

 
(6) 

 

C. Quantitative and Qualitative Results 

A total of 702 cases were designated for training, representing 

80% of the overall dataset, while 178 cases (20%) were set 

aside for testing. The training set is utilized for optimizing the 

model parameters throughout the learning process, whereas the 

test set is employed to evaluate the model’s generalizability on 

previously unseen data. This configuration allows for a more 

realistic measurement of model performance, helping to avoid 

overfitting to the training data. Additionally, key parameters 

such as class labels, modality information, and data paths are 

established, thereby providing all necessary configurations for 

the nnU-Net training pipeline. Following the training, the 3D 

U-Net model achieved an impressive overall accuracy of 

95.18%, as assessed through the evaluation of 178 patient 

cases. The total number of voxels, excluding the background, 

reached 30,106,797. This setup may enhance model 

performance, attributed to the increased number of cases and 

voxels. 

Table 2 presented below offers a comparative analysis of the 

performance of the model across three primary segmented 

classes: kidney, solid renal masses (AML, RCC, oncocytoma) 

and simple cystic renal masses. Furthermore, it encompasses 

the overall mean performance metrics for each class. The 

evaluation employs standard metrics, including accuracy, 

precision, recall, and F1-score, which enhance the transparency 

of the assessment. This rigorous approach ensures that the 

audience gains confidence in the comprehensiveness and 

validity of the evaluation process. The table presents the 

metrics of accuracy, precision, recall, and the F1-score for each 

class, along with the aggregate mean, thereby substantiating the 

model’s substantial capacity to differentiate between diverse 

lesion pathologies. 

 
TABLE II: SEGMENTATION PERFORMANCE METRICS USING 3D U-NET WITHIN 

THE NNU-NET FRAMEWORK, SHOWCASING THE OVERALL AVERAGE RESULTS 

ACROSS THE KIDNEY AND RENAL MASS CLASSES 

Class type 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-score (%) 

Kidney 91.28 92.36 95.58 93.94 

Solid renal 

masses 
97.06 88.54 78.70 81.88 

Simple cystic 

renal masses 
97.20 77.38 98.42 86.64 

Average 95.18 86.09 90.90 87.49 

  

Fig. 3 provides a visualization of the dice score (as in 

Equation 6) values utilized to evaluate expert labels against 
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actual predictions, emphasizing the significance of thorough 

assessment in segmentation studies of the developed 3D U-Net 

model. The dice score is a widely adopted metric in these 

studies, measuring the overlap ratio between predicted positive 

pixels and actual positive pixels. In this figure, the left column 

illustrates the ground-truth labels (GT), the middle column 

displays the model’s predictions, and the right column features 

the overlay of both masks (red representing GT and blue 

denoting the predictions). This comparative analysis is 

fundamental in determining the degree of consonance between 

the outputs generated by the model and the GT labels 

meticulously curated by domain experts. Such an evaluation 

not only underlines the performance of model but also provides 

insights into its reliability for practical applications. The 

analysis of Fig. 3 (c) demonstrates that the model exhibits a 

significant degree of overlap between renal and cystic 

structures, underscoring a substantial congruence between 

these anatomical features. The delineation of boundaries 

appears to be precise, particularly in the context of cystic renal 

mass segmentation. 

 

 
Fig. 3. Visual comparison of expert ground truth labels and the 

segmentation prediction of model in a representative case. (a) The 

expert-annotated segmentation mask representing the true boundaries, 

(b) The segmentation mask output. 

 

Notably, while some minor instances of over-segmentation 

are observed in specific regions of the estimation mask, 

indicated by small areas of purple/blue, and 

under-segmentation is noted in other regions of the GT mask, 

represented by small areas of pink/red, the overall alignment 

in segmentation rates suggests that the model maintains a 

high level of reliability. Furthermore, the model effectively 

identifies the clinical significance of the lesions, as indicated 

by the recall metrics. The qualitative assessment aligns with 

the impressive dice coefficients (e.g., 0.919 for kidney and 

0.924 for kidney cyst), thereby visually reinforcing the 

clinical applicability of the model. 

The selected sample sections used to visually assess the 

model’s performance are displayed in Fig. 4s. This 

visualization includes raw images (a), an overlay view with 

masks superimposed on the original anatomy (b), and isolated 

masks with the background noise removed (c). The color 

coding, organized according to the specifications of clinical 

experts, represents the following classes:  

 Green corresponds to normal renal tissue, indicating 

healthy and functioning kidney structures. 

 Blue corresponds to cystic renal masses, delineating the 

visual margins between these lesions and the surrounding 

healthy tissue. 

 Red corresponds to solid renal masses, such as AML, 

facilitating their clear identification and analysis in 

diagnostic imaging. 

The background removing process illustrated in Fig 4 (c) 

removes the complexities posed by surrounding tissues and 

bone structures, enabling a concentrated focus on the relevant 

lesions. Visual analyses reveal the model’s recall in 

accurately defining lesion boundaries and its capability to 

effectively differentiate between various pathological tissues 

(cystic versus solid). These qualitative findings support the 

average accuracy rate of 95.18% obtained and visually 

confirm the system’s applicability in clinical decision support 

processes. 

 

 
Fig. 4. Qualitative assessment of the segmentation model, (a) original 

CT images, (b) overlay of predicted segmentation masks, and (c) 

isolated segmentation masks with background removal. 
 

As demonstrated in Table 1, Aronson et al. [15] reported a 

Dice score of 93.4% for kidney tissues, while their score for 

tumors was noticeably lower at 71.1%. Similarly, Zhao et al. 

[16] achieved a score of 96.9% for kidneys, but only 80.5% 

for tumors. In contrast, our model attained an impressive 

accuracy of 97.06% for solid masses and 97.20% for cystic 

masses, showcasing consistently high performance across 

various complex pathological categories. A significant 

strength of this research is its use of a large, curated dataset 

comprising 880 contrast-enhanced CT scans, significantly 

surpassing the custom datasets typical of many previous 

studies. By emphasizing the extensive nature of this dataset, 

we aim to foster confidence in the audience regarding the 

model’s robustness and reliability across various scenarios. 

The model exhibits an impressive recall rate of 98.42% for 

cystic masses, demonstrating the nnU-Net’s proficiency in 

detecting fluid-filled lesions, which are often discovered 

incidentally. However, a notable limitation is apparent in the 

recall rate for solid renal masses (78.70%) and the precision 

rate for cystic renal masses (77.38%). This indicates that 

while the model seldom overlooks a cyst, it may occasionally 

over-segment cystic regions or under-segment solid 

neoplasms, likely due to the overlapping intensity profiles 

encountered in more complex cases. 

V. CONCLUSION 

Building upon the quantitative findings, the qualitative 

success illustrated in Fig. 4 provides medical professionals with 
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confidence that the model’s outputs consistently align with the 

anatomical boundaries established by expert radiologists. By 

accurately distinguishing between solid and cystic masses, the 

system aids urologists and radiologists in their decision-making 

processes. The capability to isolate these structures through 

background removal enhances trust and confidence, allowing 

for more precise volumetric analysis, which is essential for 

monitoring lesion growth and planning surgical interventions. 

This study presents a methodology grounded in a 3D U-Net 

architecture, implemented within the nnU-Net framework. The 

aim of this approach is to enable the automatic detection of 

normal kidney tissues, solid renal masses, and cystic renal mass 

lesions in abdominal CT scans. An analysis conducted on a 

comprehensive and carefully curated dataset, consisting of 880 

cases, yielded an average accuracy of 95.18%, a precision of 

86.09%, and a recall of 90.90%. These results underscore the 

clinical significance of the 3D U-Net approach, intended to 

inspire both healthcare professionals and AI researchers by 

showcasing its potential for real-world applications. Upon 

analyzing the model’s performance by class, it is evident that 

the exceptionally high recall rate of 98.42% for cystic renal 

masses highlights the model’s remarkable capability to detect 

fluid-filled lesions, which should instill confidence among 

researchers regarding its strengths. Conversely, the lower recall 

rate for solid renal masses (78.70%) and the reduced specificity 

rate for renal cystic masses (77.38%) indicate an imbalance in 

the results. This discrepancy is believed to arise from the 

complex morphological structures of the masses and the 

similarities in their tissue densities. To address this imbalance 

and enhance outcomes in future studies, targeted data 

augmentation techniques will be implemented, alongside the 

optimization of loss functions to minimize class imbalances. 
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