
 

Abstract—Global wastewater remediation requires 

optimizing the existing photocatalysis wastewater treatment 

technology efficiency. The primary limitations of photocatalysis 

include low efficiency in utilizing the solar spectrum, rapid 

charge recombination, and challenges related to scalability for 

practical applications. Common photocatalysts, such as 

conventional titanium dioxide (TiO2), have a large bandgap and 

are only activated by ultraviolet (UV) light. Since UV light 

constitutes only about 5% of the solar spectrum, a large portion 

of available solar energy, including visible and infrared light, is 

left unutilized. Hence, developing alternative efficient visible-

light-activated photocatalysts is crucial for harnessing more of 

the abundant solar spectrum to address global environmental 

and energy challenges like water purification and sustainable fuel 

production. Therefore, this study aimed to investigate the 

comparative performance of Copper Sulphide (CuS) and TiO2 

semiconductor photocatalysts under UV-visible irradiation using 

synthetic wastewater (SW) and raw wastewater (RW). The water 

quality parameters, chemical oxygen demand (COD), turbidity, 

and color of the treated effluent were analyzed to evaluate the 

efficacy at optimum conditions. The optimal solution 

investigative conditions selected were catalyst load (2 g/L), 

mixing speed (120 rpm), and exposure time (30 minutes) obtained 

from Design Expert Software. It was found that the Actual CuS 

(SW) and CuS (RW) follow the same trend as that of the 

Predicted CuS (SW). The optimum contaminant removal 

efficiencies for COD, turbidity, and color using Actual CuS (SW) 

were 46.8%, 73.4%, and 45.5%, and the optimum efficiencies for 

CuS (RW) are 45,1%, 90,03%, and 59,58%, respectively. The 

removal efficiencies obtained for CuS are higher in comparison 

to those of TiO2 for both (SW) and (RW). Therefore, the CuS 

photocatalyst was considered superior. 
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I. INTRODUCTION 

The presence of organic micropollutants (OMPs) in water 

sources is a significant and growing global concern, as it can 

lead to water quality degradation, impacting both human and 

environmental health, and sustainable development [1]. The 

water-energy crisis in South Africa (SA), particularly due to 

the disruption in energy supply (load-shedding) for 

wastewater (WW) treatment, can lead to increased OMPs in 

WW as inadequate treatment processes discharge these 

pollutants and contaminate water sources [2]. Conventional 

treatment technologies suffer from limitations, such as high 

energy consumption and operational costs, low OMP removal 

efficiency, transformation into harmful byproducts, and the 

generation of large volumes of sludge requiring disposal [3, 

4]. Hence, exploring the development of advanced, 

innovative, and eco-friendly water treatment technologies to 

remove OMPs and mitigate their impact is crucial [5-10]. 

Photocatalytic degradation (Advanced Oxidation Processes) 

presents a viable route toward sustainable and affordable 

water treatment solutions, utilizing sunlight and photocatalysts 

for addressing OMP challenges in WW by degrading 

pollutants, often at ambient temperature and pressure, and 

with minimal chemical requirements [11, 12]. Semiconductor 

photocatalysis leverages the unique properties of 

semiconductor materials to generate reactive species that 

degrade pollutants and inorganic pollutants in WW. The 

mechanism involves several key steps: (i) Light absorption; 

whereby the photocatalyst absorbs photons with energy equal 

to or greater than its bandgap, exciting electrons from the 

valence band to the conduction band, creating electron-hole 

pairs (excitons) [13], (ii) Charge separation and transport, 

whereby the photogenerated electrons and holes must be 

efficiently separated and transported to the surface of the 

photocatalyst to participate in redox reactions. This step is 

crucial as recombination of electron-hole pairs can 

significantly reduce the efficiency of the photocatalytic 

process [14], (iii) Surface reactions; at the surface, the 

electrons and holes drive oxidation and reduction reactions. 

For instance, holes can oxidize water or organic pollutants to 

generate reactive oxygen species (ROS) like hydroxyl 
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radicals, while electrons can reduce oxygen to superoxide 

radicals [13, 14], and finally (iv) Reactive species formation; 

the ROS generated during the photocatalytic process are 

highly reactive and can degrade a wide range of organic 

pollutants and microorganisms. This makes photocatalysis an 

effective method for environmental remediation [13-15]. 

Common semiconductor photocatalysts such a titanium 

dioxide (TiO2), bismuth-based materials, graphene-

semiconductor nanocomposites, silver-based photocatalysts, 

and Indium Vanadate (InVO2) are favored for their stability, 

efficiency, and ability to harness visible light. Their 

effectiveness is further enhanced through the creation of 

heterojunctions and optimization of surface properties. Copper 

Sulphide (CuS) combined with Graphene-nanosheets (GNs), 

(CuS-GNs), showed enhanced photocatalytic activity due to a 

larger specific surface area and lower band gap, leading to 

100% and 99.8% efficient degradation of Rhodamine B (RhB) 

and Methylene Blue (MB), respectively, in 30 mins [16]. Cu 

metal organic frameworks (Cu-MOFs) exhibited high 

photocatalytic activity for degrading various antibiotics, with 

superoxide radicals playing a dominant role in the degradation 

mechanism, leading to 91.45% efficient degradation of 

oxytetracycline in 60 mins [17]. CuS quantum dots were 

incorporated into an iron-based MOF (CuS QDs@Fe 

MIL101), which enhanced visible light absorption and charge 

separation, leading to 96% degradation efficiency of 

meloxicam in 45 min [18]. 

However, the current TiO₂  photocatalytic degradation has 

limitations. These limitations include physicochemical, 

engineering, and practical limitations. The physicochemical 

limitations include (i) Wide bandgap: TiO₂ 's bandgap 

(around 3.0-3.2 eV) restricts its absorption to UV light, which 

makes up only a small percentage of the solar spectrum, 

limiting its performance under natural sunlight; (ii) Electron-

hole recombination: photogenerated electrons and holes 

quickly recombine, reducing the number of reactive species 

(like hydroxyl radicals) available to degrade pollutants and 

thus decreasing photocatalytic efficiency and (iii) Catalyst 

separation and recovery: TiO₂ 's stable colloidal dispersion in 

water makes it difficult to separate and recover from treated 

water, posing practical challenges for reuse and commercial 

application. The engineering and practical limitations include 

(i) Low kinetics for unsupported catalysts: while 

heterogeneous photocatalysis is efficient, the degradation 

kinetics can be lower when the catalyst is supported, and 

removing pollutants requires longer treatment times, 

impacting overall process viability; (ii) Catalyst deactivation: 

over time, catalysts can become deactivated, reducing their 

ability to break down pollutants, which is a key challenge for 

long-term applications and (iii) Energy requirements: to 

overcome the limited solar response, artificial UV light 

sources are often needed, which increases the energy demand 

and cost of the photocatalytic process. These limitations 

hinder its effectiveness under sunlight and make large-scale 

application challenging [19].  

Thus, additional research assessing alternative visible-light 

photocatalysts is required to utilize the freely available solar 

energy for water treatment, to meet the future growing 

demands for clean water, environmental, and energy 

technologies (photocatalytic technology) powered by solar 

energy. Subsequently, this is significant for WW reclamation 

and to minimize adverse environmental effects [20, 21]. 

Likewise, addressing OMPs requires integrated approaches 

that promote advancements in sustainable water technologies, 

renewable energy efficiency, and pollution prevention for 

sustainable development [22, 23].  

Therefore, this study aimed to investigate the comparative 

performance of (CuS) and TiO2 semiconductor photocatalysts 

under UV-visible irradiation using synthetic wastewater (SW) 

and raw wastewater (RW). Chemical Oxygen Demand (COD) 

is a widely used parameter to measure the amount of organic 

matter in WW, indicating the degree of organic pollution [24-

26]. COD measures the amount of organic pollutants in WW, 

which is crucial for understanding the extent of contamination 

and the effectiveness of treatment processes [27]. High COD 

levels indicate the presence of significant organic matter, 

which can deplete dissolved oxygen in water bodies, 

adversely affecting aquatic life [28]. Therefore, the water 

quality parameters, COD, turbidity, and color of the treated 

effluent were analyzed to evaluate the efficacy of the 

photocatalysts under UV-visible irradiation at optimum 

conditions. The optimal solution investigative conditions 

selected were from the current study's predecessor, a 

published paper titled "Response Surface Optimization of CuS 

Photocatalytic Process Using UV-vis Irradiation for 

Wastewater Treatment," which offered the optimal conditions 

for the investigation [29] obtained from Design Expert 

Software.  

Moreover, this research aligns with the United Nations' 

Sustainable Development Goals (SDGs), which involve a 

commitment to ensure universal and equitable access to safe, 

affordable, and reliable drinking water (SDG#6: Water 

Sustainability) [30] and energy services (SDG#7: Energy 

Sustainability) [31, 32] for all by 2030. Additionally, Africa 

Agenda 2063 is a strategic framework developed by the 

African Union (AU) that aligns with the UN's SDGs, aiming 

to optimize the use of Africa's resources for sustainable 

growth [33]. Subsequently, this research also aligns with the 

African Agenda 2063 goals for healthy and well-nourished 

citizens (#3), blue/ocean economy for accelerated economic 

growth (#6), and environmentally sustainable and climate 

resilient economies and communities (#7). Mitigating these 

challenges as well as achieving the envisioned UN's 2030 

Agenda, its SDGs, and the AU’s 2063 Agenda is essential. 

The subsequent sections provide a detailed description of the 

methodology (section II), experimental setup (section III), 

results and discussion (section IV), and conclusions (section 

V). 

A. Effluent sample 

The raw municipal wastewater effluent samples were 

obtained from a local eThekwini municipality WWTP located 
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in Durban, KwaZulu-Natal, South Africa, which was sampled 

in 25L drums and utilized to conduct this study. Before every 

experiment, the samples were carefully agitated to guarantee a 

homogeneous feed combination. 

B. Synthetic municipal wastewater 

The synthetic wastewater was simulated using 15 L of 

distilled water, which contained the synthetic water chemical 

makeup, and 5 L of raw wastewater, which was then 

homogenized into a solution. This synthetic wastewater 

solution represents the typical composition for the wastewater 

treatment plant, as the organics are increased with the addition 

of chemicals found within the synthetic water makeup. The 

composition of the chemicals used was adapted from Munien 

et al. (2023) [34].  

C. Effluent sample and characterization 

The raw and synthetic wastewater was characterized by the 

following characteristics, presented in Table I. The critical 

performance criteria were assessed based on the OMP’s 

removal efficiency concerning the water quality 

characteristics: pH, turbidity (NTU), COD (mg/L), and color 

(Pt. Co).  

 
TABLE I 

PROPERTIES OF SYNTHETIC AND RAW WASTEWATER BEFORE TREATMENT 

Water Quality  

Parameter 

Raw  

Wastewater 

Synthetic 

Wastewater 

pH 7.24 6.98 

COD (mg/L) 855.33 8960 

Turbidity (NTU) 48.33 307 

Color (Pt. Co) 569 2724 

D. Chemicals and reagents 

All chemicals, reagents, and photocatalysts used in this 

study were of analytical grade and were supplied by Sigma 

Aldrich, Durban. The photocatalysts used in this study were 

Titanium (IV) Oxide (TiO2) and Copper Sulphide (CuS). The 

physicochemical characteristics of the semiconductor 

photocatalysts considered are presented in Table II [35-39]. 

 
TABLE II 

TITANIUM (IV) OXIDE AND COPPER SULPHIDE PHYSICOCHEMICAL 

CHARACTERISTICS  

Semiconductor 

Photocatalyst 
Band Gap (eV) 

Absorbance 

Wavelength 

(nm) 

Purity 

TiO2 3.2 275-405 
ReagentPlus®, 

≥99% 

CuS 1.6-2.2 380-800 
≥99% trace metals 

basis 

 

E. Analytical Methods 

The pH and the turbidity were analyzed using the pH meter 

HI98130 and the turbidity meter HI98703-02, respectively 

(HANNA instruments). The COD and color were analyzed by 

the Spectrophotometer DR 3900 (HACH). The degradation 

efficiency was monitored according to COD, turbidity, and 

color removal (responses) percentages, and determined using 

Equations (1), respectively: 

   

Removal % =  × 100 
(1) 

Where Ci and Cf are the initial and the final concentrations 

(mg/L) before and after treatment, respectively [40].  

II. EXPERIMENTAL SETUP 

A. UV-visible irradiation 

The experimental investigation was conducted to assess the 

comparative performance of semiconductor photocatalysts 

(CuS and conventional TiO2) using UV-visible irradiation. 

The experiments utilizing a UV-visible light source were 

carried out using a laboratory-scale photochemical reactor 

(Lelesil Innovative Systems), shown in Figure 1 [34]. The 

photochemical reactor consists of a reaction vessel that has a 

1.5 L capacity and an immersion well made of quartz, which 

houses the UV lamp. A cold-water circulating tank was used 

to cool down the immersion well that contains the lamp. A 

250 W, 365 nm mercury UV and UV-visible lamp was used. 

The light intensity (LUX) under UV-vis irradiation was 

recorded as 1910x100 (191 000) LUX, using an MT940 

handheld Lux Meter. 

The water quality parameters, chemical oxygen demand 

(COD), turbidity, and color of the treated effluent were 

analyzed to evaluate the effectiveness of the UV-visible light 

source at optimum conditions. The optimal solution 

investigative conditions selected were (Solution No. 1, Table 

III): catalyst load (2 g/L); mixing speed (120 rpm), and 

exposure time (30 minutes) [41] obtained from the 

experimental Box-Behnken design (BBD) matrix adapted 

from the response surface methodology (RSM) obtained from 

the Design Expert Software (version 13.0.5.0). The three (3) 

input parameters investigated were: Catalyst Load, Exposure 

Time, and Mixing Speed. The three (3) response outputs 

(COD, Color, pH) were the treatability performance 

indicators, which were modeled as a function of the input 

parameters, whereby the numerical optimization technique 

was used to ascertain the optimum conditions. Refer to the 

current study's predecessor, a published paper titled 

"Response Surface Optimization of CuS Photocatalytic 

Process Using UV-vis Irradiation for Wastewater Treatment," 

which offered the optimal conditions for the investigation 

[29].  

The optimal solution investigative conditions were applied 

to the experimental methodology for each respective 

photocatalyst (CuS and TiO2) and using the respective 

wastewater (synthetic & raw). The experimental methodology 

includes 2 g/L of the semiconductor photocatalyst introduced 

into the reactor/immersion well containing 1000 mL (1 L) of 

wastewater. The reactor was placed in a closed chamber to 

allow uniform irradiation exposure. The magnetic stirrer speed 

was set to 120 rpm, and the timer was set to 30 minutes for 

each run. The left controller was used for the suitable UV-vis 

lamp. Thereafter, the photochemical reactor start switch was 
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then initiated. After each run was completed, the samples were 

collected with a syringe and filtered through a vacuum pump 

filter (Model: LAB-440; Power: AC220V50HZ). The above 

procedure was then repeated under identical conditions for 

each respective photocatalyst (CuS / conventional TiO2) using 

the respective wastewater (synthetic/raw). 

 

 
Fig. 1 (L-SPR) Laboratory-scale photochemical reactor 

 
TABLE III 

SOLUTIONS GENERATED 

 

No 

Cat 

Load 

Mixing 

Speed 

Exposure 

Time 
COD Turbidity Color Desirability 

 

1 2 119.999 29.557 47.172 75.062 48.323 0.963   

2 2 119.998 29.762 47.172 75.017 48.257 0.963  

3 2 120.000 30.263 47.174 74.909 48.099 0.963  

         

III. RESULTS AND DISCUSSION 

A. Comparative study of CuS and conventional TiO2 

semiconductor photocatalyst under UV-visible light 

irradiation 

Finally, once the optimal operating parameters were 

verified, a comparative study was performed whereby the 

experiment was conducted for CuS and TiO2 using synthetic 

wastewater (SW) and raw wastewater (RW). As shown in 

Figure 2, the Actual CuS (SW) follows the same trend as that 

of the Predicted CuS (SW). The optimum Predicted CuS (SW) 

values were 47.2%, 75.1%, and 48.2% for COD, turbidity, 

and color, respectively. The Actual values for CuS (SW) were 

46.8%, 73.4%, and 45.5% for COD, turbidity, and color, 

respectively, with a minimal difference as discussed in section 

B, which correlates with that of the predicted results. Finally, 

once the optimal operating parameters were verified, a 

comparative study experiment was performed for CuS and 

Conventional TiO2 Photocatalyst under UV-visible Light 

Irradiation using synthetic wastewater (SW) and raw 

wastewater (RW), with the average contaminant (COD, 

turbidity, and color) removal efficiency represented 

respectively as shown in the Figure. 2. The optimum Predicted 

CuS (SW) contaminant removal efficiencies were 47.2%, 

75.1%, and 48.2% for COD, turbidity, and color, respectively 

(refer to the legend). The optimum Actual CuS (SW) 

contaminant removal efficiencies were 46.8%, 73.4%, and 

45.5% for COD, turbidity, and color, respectively, which 

correlates with the same trend as that of the Predicted CuS 

(SW) results, with a minimal difference, as the difference 

between the Predicted and Actual values was minimal (<5%). 

This suggests the model’s predictability was consistent (p < 

0.05) at 95% confidence levels. The optimum CuS (RW) 

contaminant removal efficiencies were 45.10%, 90.03%, and 

59.58%, for COD, turbidity, and color, respectively, and 

correlated to a similar trend to that of the Predicted CuS (SW) 

and Actual CuS (RW). The COD removal of 45.10% for CuS 

(RW) is similar to that of Actual CuS (SW) at 46.8% and is in 

good agreement.  

Finally, the Cus removal efficiencies obtained are higher in 

comparison to those of the conventional TiO2 for both 

synthetic wastewater (SW) and raw wastewater (RW). 

Therefore, with desirable contaminant removal performance at 

40%, among CuS and TiO2 catalysts examined, CuS was 

considered superior to the conventional TiO2.   

0

20

40

60

80

100  Pred CuS COD [SW]
 Pred CuS Turb [SW]
 Pred CuS Col [SW]
 Act CuS COD [SW]
 Act CuS Turb [SW]
 Act CuS Col [SW]
 Act TiO2 COD [SW]
 Act TiO2 Turb [SW]
 Act TiO2 Col [SW]
CuS COD [RW]
CuS Turb [RW]
CuS Col [RW]
TiO2 COD [RW]
TiO2 Turb [RW]
TiO2 Col [RW]

TiO2 RWCuS RWAcutal 

TiO2 SW

Acutal 

CuS SW

Pred 

CuS SW

C
on

ta
m

in
an

t r
em

ov
al

 (%
)

Wastewater

 Pred CuS COD [SW]
 Pred CuS Turb [SW]
 Pred CuS Col [SW]
 Act CuS COD [SW]
 Act CuS Turb [SW]
 Act CuS Col [SW]
 Act TiO2 COD [SW]
 Act TiO2 Turb [SW]
 Act TiO2 Col [SW]
CuS COD [RW]
CuS Turb [RW]
CuS Col [RW]
TiO2 COD [RW]
TiO2 Turb [RW]
TiO2 Col [RW]

 
Fig. 2 Comparative study between CuS and TiO2 using 

synthetic (SW) and raw wastewater (RW) for contaminant 

removal efficiency (%)   
 

The primary focus of this research was to degrade the 

organics, and the results showed an optimum COD removal 

efficiency at 47% which equates to 4749 mg/L remaining and 

therefore met the maximum permitted discharge limits of 

<5000 mg/L (Table VI) [42].  However, the turbidity and 

color removal efficiency at 73% and 46% equated to 83 NTU 

and 1471 Pt.Co, which did not meet the maximum permitted 

discharge limits of <5 NTU and <15 Pt.Co for turbidity and 

color, respectively, according to the South Africa Bureau of 

Standards [43] for drinking water (Table IV). This is due to 

the vacuum pump not being able to completely filter all 

photocatalyst nanoparticles. Consequently, a post-treatment 

process is required to enhance the improvement of the water 

quality (color and turbidity). 
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TABLE VI 

MAXIMUM LIMITS OF PERMITTED DISCHARGES IN SOUTH AFRICA 

Parameter 

South Africa 

Ref. 

Not less than Not to exceed 

pH (value at 

25°C) 

5.5 12 [42] 

COD - 5 000 mg/L [42] 

Turbidity - 5 NTU [43] 

Color - 15 Pt.Co [43] 

    

IV. CONCLUSION 

A comparative study was performed, whereby the same 

experiment was conducted for CuS and TiO2 using synthetic 

wastewater and raw wastewater. The Actual CuS (SW) and 

raw wastewater for CuS (RW) follow the same trend as that of 

Predicted CuS (SW). The optimum contaminant removal 

efficiencies for COD, turbidity, and color using Actual CuS 

SW were 46.8%, 73.4%, and 45.5%, and the optimum 

efficiencies for CuS RW are 45,1%, 90,03%, and 59,58%, 

respectively. The removal efficiencies obtained for CuS are 

higher in comparison to those of TiO2 for both synthetic 

wastewater (SW) and raw wastewater (RW). Therefore, with 

desirable performance at 40%, among CuS and TiO2 catalysts 

examined, CuS was considered superior to the conventional 

TiO2. 
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